Quadrature by expansion: A new method for the evaluation of layer potentials

نویسندگان

  • Andreas Klöckner
  • Alexander Barnett
  • Leslie Greengard
  • Michael O'Neil
چکیده

Integral equation methods for the solution of partial differential equations, when coupled with suitable fast algorithms, yield geometrically flexible, asymptotically optimal and well-conditioned schemes in either interior or exterior domains. The practical application of these methods, however, requires the accurate evaluation of boundary integrals with singular, weakly singular or nearly singular kernels. Historically, these issues have been handled either by low-order product integration rules (computed semi-analytically), by singularity subtraction/cancellation, by kernel regularization and asymptotic analysis, or by the construction of special purpose “generalized Gaussian quadrature” rules. In this paper, we present a systematic, highorder approach that works for any singularity (including hypersingular kernels), based only on the assumption that the field induced by the integral operator is locally smooth when restricted to either the interior or the exterior. Discontinuities in the field across the boundary are permitted. The scheme, denoted QBX (quadrature by expansion), is easy to implement and compatible with fast hierarchical algorithms such as the fast multipole method. We include accuracy tests for a variety of integral operators in two dimensions on smooth and corner domains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of quadrature errors in layer potential evaluation using quadrature by expansion

In boundary integral methods it is often necessary to evaluate layer potentials on or close to the boundary, where the underlying integral is difficult to evaluate numerically. Quadrature by expansion (QBX) is a new method for dealing with such integrals, and it is based on forming a local expansion of the layer potential close to the boundary. In doing so, one introduces a new quadrature error...

متن کامل

Ubiquitous evaluation of layer potentials using Quadrature by Kernel-Independent Expansion

We introduce a quadrature scheme—QBKIX—for the ubiquitous highorder accurate evaluation of singular layer potentials associated with general elliptic PDEs, i.e., a scheme that yields high accuracy at all distances to the domain boundary as well as on the boundary itself. Relying solely on point evaluations of the underlying kernel, our scheme is essentially PDE-independent; in particular, no an...

متن کامل

A Non-linear Static Equivalent Model for Multi-layer Annular/Circular Graphene Sheet Based on Non-local Elasticity Theory Considering Third Order Shear Deformation Theory in Thermal Environment

In this paper, it is tried to find an approximate single layer equivalent for multi-layer graphene sheets based on third order non-local elasticity theory. The plates are embedded in two parameter Winkler-Pasternak elastic foundation, and also the thermal effects are considered. A uniform transverse load is imposed on the plates. Applying the non-local theory of Eringen based on third order she...

متن کامل

On the evaluation of layer potentials close to their sources

When solving elliptic boundary value problems using integral equation methods one may need to evaluate potentials represented by a convolution of discretized layer density sources against a kernel. Standard quadrature accelerated with a fast hierarchical method for potential field evaluation gives accurate results far away from the sources. Close to the sources this is not so. Cancellation and ...

متن کامل

Nonlocal Mechanical Buckling Analysis of Nano Single Layer Sheets Using Differential Quadrature method

The following article investigates buckling of moderately thick circular Nano plates with an orthotropic property under uniform radial compressive in-plane mechanical load. Taking into account nonlocal elasticity theory (Eringen), principle of virtual work, first order shear deformation plate theory (FSDT) and nonlinear Von-Karman strains, the governing equations are obtained based on displacem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 252  شماره 

صفحات  -

تاریخ انتشار 2013